78. Lucas, S.N., Thomas, S.N., 2024. Therapeutic Immunomodulation of Tumor-Lymphatic Crosstalk via Intratumoral Immunotherapy. Molecular Pharmaceutics. 10.1021/acs.molpharmaceut.4c00692.
77. Archer, P.A., Heiler, A.J., Borsque, A.R., Alapan, Y., Thomas, S.N., 2024. Different leukocyte subsets are targeted by systemic and locoregional administration despite conserved nanomaterial characteristics optimal for lymph node delivery. Biomaterials Science. DOI: 10.1039/D4BM00910J.
76. Camargo, C.P., Alapan, Y., Muhuri, A., Lucas, S., Thomas, S.N., 2024. Single-cell adhesive profiling in an optofluidic device elucidates CD8+ T lymphocyte phenotypes in inflamed vasculature-like microenvironments. Cell Reports Methods. 4, 100743.
75. Muhuri, A.*, Alapan, Y.*, Camargo, C.P., Thomas, S.N., 2024. Microengineered in vitro assays for screening and sorting manufactured therapeutic T cells. Journal of Immunology. 212 (2): 199–207.
74. O’Melia, M.J. and Thomas, S.N.§, 2023. Lymphatics drain nanoparticles from tumours. Nature Materials. https://doi.org/10.1038/s41563-023-01701-2.
73. Kim, J., Archer, P.A., Avecilla, A.R.C., Manspeaker, M.P., Pollack, B.P., Thomas, S.N.§, 2023. Sustained release hydrogel for durable locoregional chemoimmunotherapy for BRAF-mutated melanoma. Journal of Controlled Release. Volume 357, p655-668.
72. Camargo, C., Muhuri, A., Alapan, Y., Sestito, L.F., Kholsa, M.¥, Manspeaker, M.P., Smith, A., Paulos, C.M., Thomas, S.N.§, 2023. Adhesion analysis for enrichment of CD8+ T cells with enhanced tumor homing capability for adoptive cell therapy. Cell Reports. VOLUME 42, ISSUE 3. https://doi.org/10.1016/j.celrep.2023.112175.
71. Sestito, L.F., To, K., Cribb, M., Archer, P.A., Thomas, S.N.§, Dixon, J.B.§, 2023. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. Science Advances. 6: eabd7134.
70. Ravindranathan, S., Tenzin, P., Li, J.M., Dhamsania, R., Ware, M.B., Zaidi, M.Y., Want, S., Zhu, J., Cardenas, M., Liu, Y., Gumber, S., Robinson, B., Sen-Majumdar, A., Chandrakasan, S., Kissick, H., Frey, A.B., Thomas, S.N., El-Rayes, B.F., Lesinski, G.B., Waller, E.K., 2022. Targeting vasoactive intestinal peptide- mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nature Communications. 13, 6418. https://doi.org/10.1038/s41467-022-34242-4.
69. Manspeaker, M., O’Melia, M.J., Thomas, S.N.§, 2022. Elicitation of stem-like CD8+ T cell responses via lymph node-targeted chemoimmunotherapy evokes systemic tumor control. Journal of Immunotherapy of Cancer. 10:e005079. doi:10.1136/jitc-2022-005079.
68. Kim, J. and Thomas, S.N.§, 2022. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacological Reviews. 74 (4) 1146-1175; DOI: https://doi.org/10.1124/pharmrev.121.000500.
67. Alapan, Y. and Thomas, S.N.§, 2022. Mechanics drive lymph node expansion. Nature Immunology. https://doi.org/10.1038/s41590-022-01277-0.
66. Kim, J., Francis, D.M., Sestito, L.F., Archer, P., Manspeaker, M.P., O’Melia, M.J., Thomas, S.N.§, 2022. Thermosensitive hydrogel releasing nitric oxide donor and anti-CTLA-4 micelles for anti-tumor immunotherapy. Nature Communications. 10.1038/s41467-022-29121-x.
65. O’Melia, M.J., Mulero Russe, A., Kim, J., Pybus, A., DeRyckere, D., Wood, L., Graham, D., Botchwey, E., Garcia, A.J., Thomas, S.N.§, 2022. Synthetic matrix scaffolds engineer the in vivo tumor immune microenvironment for immunotherapy screening. Advanced Materials. Jan 6:e2108084. doi: 10.1002/adma.202108084. Epub ahead of print. PMID: 34989049.
64. Kim, J., Archer, P., Thomas, S.N.§, 2021. Innovations in lymph node targeting nanocarriers. Seminars in Immunology. https://doi.org/10.1016/j.smim.2021.101534.
**Invited review for Special Issue on Nanoparticles and Immune Responses.
63. Francis, D.M., Manspeaker, M.P., Archer, P., Heiler, A., Sestito, L., Schudel, A., Thomas, S.N.§, 2021. Drug-Eluting Immune Checkpoint Blockade Antibody-Nanoparticle Conjugate Enhances Locoregional and Systemic Combination Cancer Immunotherapy through T Lymphocyte Targeting. Biomaterials. Volume 279, 121184.
62. Archer, P., Sestito, L., Manspeaker, M.P., O’Melia, M.J., Schudel, A., Rohner, N.A., Mei, Y., Thomas, S.N.§, 2021. Quantitation of lymphatic transport mechanism and barrier influences on lymph node-resident leukocyte access to lymph-borne macromolecules and drug delivery systems. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-021-01015-3.
**Invited for Special Issue on Overcoming Transport Barriers to Immunotherapy.
**Special Issue Best Paper Award.
61. Cribb, M.T., Sestito, L., Rockson, S., Nicolls, M., Thomas, S.N., Dixon, J.B., 2021. The kinetics of lymphatic dysfunction and leukocyte expansion in the draining lymph node during LTB4 antagonism in a mouse model of lymphedema. Journal of Molecular Sciences. 22(9), 4455; https://doi.org/10.3390/ijms22094455.
**Special issue on “Current Mechanistic Understandings of Lymphedema and Lipedema”.
60. Kim, J., Francis, D.M., and Thomas, S.N.§, 2021. In situ crosslinking depot formulation for controlled release of immune checkpoint inhibitor antibodies. Nanomaterials. 11(2), 471; https://doi.org/10.3390/nano11020471.
**Invited for Biobased Nanoscale Drug Delivery Systems Special Issue.
59. O’Melia, M.J., Rohner, N.A., Manspeaker, M.P., Francis, D.M., Kissick, H.T., Thomas, S.N.§, 2020. Quality of CD8+ T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Science Advances. 6: eabd7134.
58. O’Melia, M.J., Manspeaker, M.P., Thomas, S.N.§, 2021. Tumor-draining lymph nodes are survival niches that support CD8 T cell priming against lymphatic transported tumor antigen and therapeutic effects of immune checkpoint blockade in TNBC. Cancer Immunology, Immunotherapy. https://doi.org/10.1007/s00262-020-02792-5.
57. Birmingham, K.G., O’Melia, M.J., Brody, S.¥, Reyes Aguilar, D.¥, El-Reyes, B., Lesinski, G., Thomas, S.N.§, 2020. Lymph node subcapsular sinus microenvironment-on-a-chip modeling shear flow relevant to lymphatic metastasis and immune cell homing. iScience. Volume 23, Issue 11, 101751.https://doi.org/10.1016/j.isci.2020.101751.
**Invited for Special Issue in partnership with NCI Cancer Tissue Engineering Collaborative on Engineering Cancer Models.
56. Manspeaker, M.P. and Thomas, S.N.§, 2020. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Advanced Drug Delivery Reviews. Volume 160, 19-35. https://doi.org/10.1016/j.addr.2020.10.004.
55. Francis, D.M., Manspeaker, M., Schudel, A., Sestito, L., O’Melia, M., Kissick, H., Pollack, B.P., Waller, E.K., Thomas, S.N.§, 2020. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Science Translational Medicine. 12, eaay3575.
54. Sestito, L. and Thomas, S.N§. 2020.
Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials. doi.org/10.1016/j.biomaterials.2020.120411.
**Selected as Leading Opinion article.
53. Schudel, A., Chapman, A.P., Kwan, M.Y., Higgenson, C.J., Francis, D.M., Manspeaker, M.P., Avecilla, A.R.C., Rohner, N.A., Finn, M.G.§, Thomas, S.N.§, 2020.
Programmable multistage delivery to lymph nodes. Nature Nanotechnology. https://doi.org/10.1038/s41565-020-0679-4.
**Highlighted in Nature Nanotechnology News & Views.
Targeting immune cells within lymph nodes.
52. Kim, J., Sestito, L., Im, S., Kim, W.J., Thomas, S.N.§, 2020. Poly(cyclodextrin)-Polydrug Nanocomplexes as Synthetic Oncolytic Virus for Locoregional Melanoma Chemoimmunotherapy. Advanced Functional Materials. 1908788.
51. Birmingham, K.G., Robinson, I., Edwards, E.E., Thomas, S.N.§, 2020. Photoconversion and chromatographic microfluidic system reveals differential cellular phenotypes of adhesion velocity versus persistence in shear flow. Lab on a Chip. DOI: 10.1039/C9LC00923J.
50. Manspeaker, M., Archer, P., and Thomas, S.N§. 2020. Biomaterials for Immunoengineering. Biomaterials Science, Fourth Edition. (Wagner, Sakiyama-Elbert and Zhang eds.) Elsevier.
49. O’Melia, M., Lund, A.W.§, Thomas, S.N.§, 2019. The biophysics of lymphatic transport: engineering tools and immunological consequences. iScience. 22: 28–43.
48. Cermeno, E., O’Melia, M., McDevitt, T., Lu, H., Huang, E., Thomas, S.N.§, Garcia, A.J.§, 2020. Hydrodynamic shear-based purification of cancer cells with enhanced tumorigenic potential. Integrative Biology. 12; 1–11. doi: 10.1093/intbio/zyz038.
47. Sestito, L. and Thomas, S.N.§, 2019. Biomaterials for Modulating Lymphatic Function in Immunoengineering. ACS Pharmaceutical and Translational Science. doi:10.1021/acsptsci.9b00047.
**Invited contribution for special issue on “Innovation and Discovery in Cardiovascular Biology.”
**Highlighted in ACS Biomaterials Science & Engineering Issue Editorial.
Innovation and Discovery in Cardiovascular Biology.
46. Chandrasekaran, S., Sasaki, M., Scharer, C.D., Kissick, H.D., Magliocca, K.R., Sapkota, B., Gutman, D.A., Cooper, L.A., Lesinksi, G.B., Waller, E.K., Thomas, S.N., Boss, J.M., Swerlick, R.A., Pollack, B.P., 2019. Phosphoinositide 3’ kinase signaling can modulate MHC class I and II expression.. Molecular Cancer Research. pii: molcanres.0545.2019. doi: 10.1158/1541-7786.MCR-19-0545.
45. Schudel, A.*, Francis, D.M.*, Thomas, S.N.§, 2019. Material design for lymph node drug delivery. Nature Reviews Materials. 4, 415–428.
44. Kim, J., Manspeaker, M., Thomas, S.N.§, 2019. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomaterialia. pii: S1742-7061(19)30116-3. doi: 10.1016/j.actbio.2019.02.012
43. Birmingham, K.G., O’Melia, M., Ban, D., Mouw, J., Edwards, E., Marcus, A., McDonald, J., Thomas, S.N.§, 2019. Analyzing Mechanisms of Metastatic Cancer Cell Adhesive Phenotype Leveraging Preparative Adhesion Chromatography Microfluidic. Advanced Biosystems. doi.org/10.1002/adbi.201800328.
42. Edwards, E.E., Birmingham, K.G., O’Melia, M., Oh, J., Thomas, S.N.§, 2018. Fluorometric Quantification of Single Cell Velocities to Investigate Cancer Metastasis. Cell Systems. DOI:https://doi.org/10.1016/j.cels.2018.10.005.
**Issue “Featured Article”.
41. Tellier, L.E., Krieger, J.R., Brimeyer, A.L., Coogan, A.C., Falis, A.A., Rinker, T.E., Schudel, A., Thomas, S.N., Jarrett, C.D., Willett, N.J., Botchwey, E.A., Temenoff, J., 2018. Localized SDF-1
40. Hettiaratchi, M.H.*, Schudel, A.*, Rouse, T., Garcia, A.J., Thomas, S.N., Guldberg, R.E., McDevitt, T.C., 2018. Localized SDF-1
39. Schudel, A., Sestito, L., and Thomas, S.N., 2018. S-nitrosated poly(propylene sulfide) nanoparticles for enhanced nitric oxide delivery to lymphatic tissues. Journal of Biomedical Materials Research Part A. DOI: 10.1002/jbm.a.36348.
38. Lu, I.M., Kassis, T., Rogers, A.M., Schudel, A., Weil, J., Evans, C.C., Moorhead, A.R., Thomas, S.N., Dixon, J.B., 2018. Optimization of culture and analysis methods for enhancing long-term B. malayi survival, molting, and motility in vitro. Parasitology Open. https://doi.org/10.1017/pao.2017.19.
37. Kersh, A.E., Ng, S., Chang, Y.M., Sasaki, M., Thomas, S.N., Kissick, H., Lesinski, G., Waller, E.K., Pollack, B.P., 2017. The immunologic effects of targeted therapies – relevance to cancer and beyond. Journal of Clinical Pharmacology. 2017 Nov 14. doi: 10.1002/jcph.1028.
36. Palao-Suay, R., Aguilar, M.R., Parra-Ruiz, F.J., Martin-Saldaña, S., Rohner, N.A., Thomas, S.N., San Roman, J., 2017. Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: effect of TPP and LTVSPWY peptide. Journal of Materials Science: Materials in Medicine. 28: 152. https://doi.org/10.1007/s10856-017-5963-y.
35. Edwards, E.E., Oh, J., Anilkumar, A., Birmingham, K.G., Thomas, S.N.§, 2017. P-, but not E- or L-, selectin-mediated rolling adhesion persistence in hemodynamic flow diverges between metastatic and leukocytic cells. Oncotarget. doi: 10.18632/oncotarget.18786.
34. Aguilar M.R., Palao-Suay, R.†, Martín-Saavedra, F.M., Duch, C.E., Martín-Saldaña, S., Parra-Ruiz, F., Rohner, N.A., Thomas, S.N., Vilaboa, N., San Román, J., 2017. Photothermal and photodynamic activity of polymeric nanoparticles based on α-TOS-RAFT block copolymers conjugated to IR-780. Acta Biomaterialia. Jul 15;57:70-84. doi: 10.1016/j.actbio.2017.05.028. Epub 2017 May 13.
33. Francis, D.M. and Thomas, S.N.§., 2017. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Advanced Drug Delivery Reviews. doi.org/10.1016/j.addr.2017.04.011.
32. Edwards, E.E. and Thomas, S.N.§., 2017. P-selectin and ICAM-1 synergy in mediating THP-1 monocyte adhesion in hemodynamic flow is length dependent. Integrative Biology. DOI: 10.1039/C7IB00020K.
31. Rohner, N.A. and Thomas, S.N.§, 2016. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomaterials Science and Engineering. Nov 18. doi: 10.1021/acsbiomaterials.6b00438.
**Highlighted in Immunoengineering Special Issue editorial.
30. Palao-Suay, R., Aguilar, M.R., Parra-Ruiz, F.J., Maji, S., Hoogenboom, R., Rohner, N.A., Thomas, S.N., San Román, J., 2016. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity. Macromolecular Bioscience. Oct 14. doi: 10.1002/mabi.201600259.
29. Suo, J., Edwards, E.E., Anilkumar, A., Sulchek, T., Giddens, D.§, Thomas, S.N.§, 2016. Force and Torque on Spherical Particles in Micro-Channel Flows Using Computational Fluid Dynamics. Royal Society Open Science. Published 27 July 2016.DOI: 10.1098/rsos.160298.
28. Rohner, N.A. and Thomas, S.N.§, 2016. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. Journal of Controlled Release. 10.1016/j.jconrel.2015.12.027. 223: 99–108.
**Highlighted in JCR issue Cover Story.
Targeting prostate cancer cells en route to dissemination.
27. Thomas, S.N.§, Rohner, N.A., Edwards, E.E., 2016. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annual Review of Biomedical Engineering. 18: 207-233.
26. Palao-Suay, R., Aguilar, M.R., Parra-Ruiz, F.J., Maji, S., Hoogenboom, R., Rohner, N.A., Thomas, S.N., San Román, J., 2016. α-tocopheryl succinate-based amphiphilic block copolymers obtained by RAFT and their nanoparticles for the treatment of cancer. Polymer Chemistry. 10.1039/C5PY01811K.
25. Oh, J., Edwards, E.E.*, McClatchey, P.M.*, Thomas, S.N.§. 2015 Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin. Journal of Cell Science. 128(20):3731-43.
24. Rohner, N.A.*, McClain, J.*, Tuell, S.L., Warner, A., Smith, B., Yun, Y., Mohan, A., Sushnitha, M., Thomas, S.N.§. 2015. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB Journal. 10.1096/fj.15-274761.
23. Schudel, A., Kassis, T., Dixon, J.B., Thomas, S.N.§. 2015. S-nitrosated polypropylene sulfide nanoparticles for thiol-dependent transnitrosation and toxicity against adult female filarial worms. Advanced Healthcare Materials. 10.1002/adhm.201400841.
22. Schudel, A., Bellavia, M., Thomas, S.N.§, 2015. Nanosystems for Immunotherapeutic Drug Delivery. In Biomaterials in Regenerative Medicine and the Immune System. (Singh and Gaharwar eds.) Springer. p 157-170.
21. McClatchey, P.M.*, Hannen, E.*, Thomas, S.N.§, 2016. Microfluidic platforms for the interrogation of intravascular cell trafficking mechanisms influenced by hemodynamic forces. In Microscale Technologies for Cell Engineering Applications. (Santambrogio ed.) Springer. p 197-218.
20. Thomas, S.N.§ and Schudel, A., 2015. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Current Opinion in Chemical Engineering. 7: 65-74.
19. Thomas, S.N., Vokali, E., Lund, A.W., Hubbell, J.A., Swartz, M.A., 2014.
Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response.
Biomaterials. 35 (2): 814-24.
**Highlighted in Nature 2013, 504: S16-17.
Cancer vaccines: Material breach.
18. Thomas, S.N., Rutkowski, J.M., Pasquier, M., Kuan, E., Alitalo, K., Randolph, G., Swartz, M.A., 2012. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. Journal of Immunology. 189 (5): 2181-90.
17. Dallas, M.R., Liu, G., Chen, W., Thomas, S.N., Wirtz, D., Huso, D.L., Konstantopoulos, K., 2012. Divergent Roles of CD44 and Carcinoembryonic Antigen in Colon Carcinoma Metastasis. FASEB J. 26 (6): 2648-56.
16. Lund, A.W., Duraes, F.V., Hirosue, S., Raghaven, V., Nembrini, C., Thomas, S.N., Issa, A., Hugues, S., Swartz, M.A., 2012. Tumor VEGF-C promotes immune tolerance and tumor antigen cross-presentation by lymphatics. Cell Reports. 1(3): 191-9.
15. Yu, S.S., Lau, C.M., Thomas, S.N., Jerome, W.G., Maron, D.J., Dickerson, J.H., Hubbell, J.A. and Giorgio, T.D., 2012. Macrophages Exhibit Size-Dependent Nonspecific Uptake of PEGylated Nanoparticles and Respond to MMP-9-Triggered Modulation of Nanoparticle Size. International Journal of Nanomedicine. 7: 799–813.
14. Velutto, D., Thomas, S.N., Simeoni, E., Swartz, M.A., Hubbell, J.A., 2011. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed-micelles as non-viral vectors for plasmid DNA: tumor immunotoxicity in B16F10 melanoma. Biomaterials. 32 (36): 9839-47.
13. Konstantopoulos, K., Thomas, S.N. 2011. Hematogenous Metastasis: Roles of CD44v and Alternative Sialofucosylated Selectin Ligands. In Advances in Experimental Medicine and Biology: Molecular Immunology of Complex Carbohydrates 3. (Wu ed.) Springer. 705: 601-19.
12. Thomas, S.N., van der Vlies, A.J., O’Neil, C.P., Reddy, S.T., Yu, S.S., Giorgio, T.D., Swartz, M.A., Hubbell, J.A., 2011. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials. 32 (8): 2194-203. Epub 2010 Dec 22.
11. Hubbell, J.A., Thomas, S.N., Swartz, M.A., 2009. Materials engineering for immunomodulation. Nature. 462 (7272): 449-460.
10. Thomas, S.N.*, Tong, Z.Q.*, Stebe, K., Konstantopoulos, K. 2009. Identification, characterization and utilization of tumor cell selectin ligands in the design of colon cancer diagnostics. Biorheology. 46:207-25. *Equally contributing.
9. Konstantopoulos, K., Thomas, S.N. 2009. Cancer Cells in Transit: The Vascular Interactions of Tumor Cells. Annual Review of Biomedical Engineering. 11:177–202.
8. Thomas, S.N., Schnaar, R.L., Konstantopoulos, K. 2009. Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: Comparative biochemical properties of selectin ligands in host and tumor cells. Am J Physiol Cell Physiol. 296: C505-C513.
7. Thomas, S.N., Zhu, F., Schnaar, R.L., Alves, C.S., Konstantopoulos, K. 2008. Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. Journal of Biological Chemistry. 283(23): 15647-55.
6. Alves, C.S., Burdick, M.M., Thomas, S.N., Pawar, P., Konstantopoulos, K. 2008. The Dual Role of CD44 as a Functional P-selectin and Fibrin Counter-receptor. Am J Physiol Cell Physiol. 294(4): C907-16.
5.
Napier, S.L., Healy, Z.R., Schnaar, R.L., Konstantopoulos, K. 2007.
Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of CD44v and alternate sialofucosylated selectin ligands. Journal of Biological Chemistry 282(6); 3433-3441.
**Highlighted in Current Opinion in Cell Biology 2007, 19: 572-577.
Paradigms for glycan-binding receptors in cell adhesion.
4. Hanley, W., Napier, S., Burdick, M.M., Schnaar, R., Sackstein, R., Kostantopoulos, K. 2006. Variant isoforms of CD44 are P- and L-selectin ligands on colon carcinoma cells. FASEB J. 20(2): 337-9.
3. Ahn, K.C., Jun, A.J., Pawar, P., Jadhav, S., Napier, S., McCarty, O.J., Konstantopoulos, K. 2005. Preferential Binding of Platelets to Monocytes over Neutrophils Under Flow. Biochem Biophys Res Commun. 1;329(1): 345-55.
2. Cantor, R.M., Yuan, J., Napier, S., Kono, N., Grossman, J.M., Hahn, B.H., Tsao B.P. 2004. Systemic Lupus Erythematosus Genome Scan: Support for Linkage at 1q23, 2q33, 16q12–13, and 17q21–23 and Novel Evidence at 3p24, 10q23–24, 13q32, and 18q22–23. Arthritis and Rheumatism. 50: 3203-3210.
1. Cantor, R.M., de Bruin, T., Kono, N., Napier, S., van Nas, A., Allayee, H., Lusis, A.J. 2004. Quantitative Trait Loci for Apolipoprotein B, Cholesterol, and Triglycerides in Familial Combined Hyperlipidemia Pedigrees. Arterioscler Thromb Vasc Biol. 24: 1935-1941.
Editorials
9. Nakamura, T. and Thomas, S.N. 2022. Drugging the lymphatic system: An emerging opportunity for cancer immunotherapy. Advanced Drug Delivery Reviews. 2022 Jan;180:114040. doi: 10.1016/j.addr.2021.114040. Epub 2021 Nov 8. PMID: 34763001.
8. Antiangiogenic cancer drug drives lymphangiogenic metastasis. Science Translational Medicine. 8 February 2017: Vol. 9, Issue 376, pp. DOI: 10.1126/scitranslmed.aam6060.
7. Committing CAR T cells to memory. Science Translational Medicine. 21 December 2016: Vol. 8, Issue 364, pp. p.364ec181; DOI: 10.1126/scitranslmed.aal0069.
6. T regulating lymphedema. Science Translational Medicine. 9 November 2016: Vol. 8, Issue 364, pp. 364ec181 DOI: 10.1126/scitranslmed.aal0069.
5. Cancer catch and sugar release cue immune attack. Science Translational Medicine. 28 September 2016: Vol. 8, Issue 352, pp. 358ec157; DOI: 10.1126/scitranslmed.aai8226.
4. Triple threat to colorectal cancer. Science Translational Medicine. 17 August 2016: Vol. 8, Issue 352, pp. 352ec132; DOI: 10.1126/scitranslmed.aai7458.
3. Lym(fat)ics. Science Translational Medicine. 6 July 2016: Vol. 8, Issue 340, p.346ec107; DOI: 10.1126/scitranslmed.aag3103.
2. Nanoparticle gets the worm. Science Translational Medicine. 25 May 2016: Vol. 8, Issue 340, p.340ec85; DOI: 10.1126/scitranslmed.aaf9199.
1. I heart lymphatics. Science Translational Medicine. 13 April 2016: Vol. 8, Issue 334, p.334ec58; DOI: 10.1126/scitranslmed.aaf6936.